NSMQ 2023 Contest 3 Maths: Best Questions Review
What’s On This Page
Introduction
Hello people, this is another session of our revealing NSMQ 2023 Questions Review Series (Maths edition). So far so good, we have successfully completed two episodes. If this is your first time here, please make sure to check them out NSMQ Past Questions and Answers.
Just as you know already, this piece is about the NSMQ 2023 Contest 3. Apparently, this year’s competition saw the organizers deciding to optimize the workload by giving out the same sets of questions to each 3 one-eighth contests. For instance, since contests 1, 2 and 3 were set to take place around the same time, all the 3 contests had the same question sets. From round one (nsmq fundamentals) to the nsmq speed race to the nsmq Problem of the Day to the nsmq True or False to the nsmq riddles, exactly the same questions were asked.
For formality sake, we have to review every Maths question. Let’s dive in already.
Hi there,
If you are here, we are safe to assume you’ve a special interest in the NSMQ competition. Else if, you are preparing for WASSCE, SAT, ACT, AP,GSCE or any aptitude test. Else, you are a lover of Maths/Mathematics, Biology, Chemistry and Physics.
We have a proposal for you.
Get free access to our learning & training center to help with your development.
https://viewknust.com/nsmq/
NSMQ 2023 Contest 3
This was a one-eighth battle between Bishop Herman College, Adidome SHS and OLA SHS, Ho. The quest here is to take a look at the Maths/Mathematics questions that were asked. My focus will be on accuracy – how you can answer the questions right. I will dissect them in order of rounds: round one (fundamentals), speed race, problem of the day and True/False.
You can watch the particular contest NSMQ 2023 Contest 3 to see how the atmosphere, performance and reactions went.
Round One (NSMQ Fundamentals)
Set 1 – School A
Answer
We might not know what the cartesian or its equation is, but we can note two points from the question.
- Our answer must be an equation.
- It must be expressed in terms of x and y.
Luckily for us, both equations have only one other variable. Therefore, we can comfortably go ahead and effect the change of subject.
Now we have expressed them in terms of x and y, we have to form an equation (as per the point 1).
This takes us to trigonometry. The only possible to form a single equation from the two trigonometric equations is to use a trigonometric identity that relates those two.
This can be a final answer, unless you were asked to simplify further.
Set 1 – School B
Answer
Just like we approached the previous question, same thing we are going to do here. You can see it’s a similar question. In fact, they are part of the same set with a single preamble.
You can try it yourself if you truly understood the first one and compare your answer with the one I’ll provide below.
First, we will express our equations in terms of x and y using change of subject. Then, we’ll use our trigonometric identities to get the Cartesian equation.
Set 1 – School C
Answer
I believe you now know how to approach a question of this sort and won’t hestitate to solve it anytime. Since the understanding is there, I will go sraight to the solution.
Set 2 – School A
Answer
Set 2 – School B
Answer
Set 2 – School C
Answer
Round Two (NSMQ Speed Race)
Set 1 – First Question
Answer
Set 1 – Second Question
Answer
If you familiar with two-set problems and venn diagrams, then you know that the universal set n(U) is found by adding n(A) and n(B) as well as those not found in either A or B and then subtracting their intersection n(A n B). Same with their probabilities.
Set 1 – Third Question
Answer
In vector algebra, the position vector of a point, let’s say B, relative to another point, say A, is the displacement from point A to point B. This is given by
Round Three (NSMQ Problem Of The Day)
Question
Answer
Round Four (NSMQ True or False)
Set 1 – School A
Answer
This is a tricky one, but the answer is False. Why? Because the square root of an expression is somehow viewed differently from the square root used in an equation. If the square root is just an expression, we are interested in the principal square root of the real number and there can be only one principal root. This is why it is a convention to use the positive values for even nth root of a number, even though the negative root is also possible.
Set 1 – School B
Answer
This is True. It is only -3 that can be cubed to get -27.
Set 1 – School C
Answer
This is a False statement. As I explained earlier, unless the nth root is not being used in an equation, we are only interested in only one root called the principal root. For even nth root, it is only the positive value.
Set 2 – School A
Answer
For this type of question, it is a matter of thinking in terms of sets. If you’re to determine whether or not “A is a B”, I want you to approach it this way.
- Take B as the general set and think about what qualifies something to be a member of or an element of B.
- Then take A as the subset and ask what makes something a member of A.
- Now, ask yourself that can A be completely found in B per the qualifications you thought of.
- If yes, your answer is True. Else, it’s false.
- What is a Rhombus? A rhombus is a quadrilateral, meaning has four sides, with all sides of equal length.
- A square has four equal sides and and all its angles are right angles (90 degrees).
- With the above descriptions, we can tell a square checks the one requirement on the rhombus list.
- Therefore, the answer is True
Set 2 – School B
Answer
Let’s test our approach here too.
- What is a Square? A square has four equal sides and and all its angles are right angles (90 degrees).
- How about a rectangle? It has four sides with each opposite sides being of equal length and also its angles are right angles
- With the above descriptions, we can tell that even though the rectangles has an all-90-degrees angle, it does not have all sides equal in order to be a square.
- Therefore, the answer is False
Set 2 – School C
Answer
Same approach here too.
- What is a parallelogram? It is a quadrilateral with two pairs of parallel sides; opposite sides are parallel and have equal length as well as opposite angles are equal.
- How about a trapezium? It is a quadrilateral that has at least one pair of parallel sides.
- With the above descriptions, we can tell that a trapezium may not be a parallelogram.
- Therefore, the answer is False
Conclusion
What a run we have had. Sadly, we need to end this session on the NSMQ 2023 Contest 3 to an end. With what we did in the round one (nsmq fundamentals), the nsmq speed race, the nsmq Problem of the Day and the nsmq True or False, it is my believe you now have no problem dealing with such Maths. Until we meet again in the next episode NSMQ 2023 Contest 4, stay safe, stay sharp and stay practicing.